## **Quadratics - Maximum and Minimum**

- 1. Jason jumped off of a cliff into the ocean in Acapulco while vacationing with some friends. His height as a function of the time could be modeled by the function  $h(t) = -16t^2 + 16t + 480$  where t is the time in seconds and h is the height in feet.
  - a. How long did it take for Jason to reach his maximum height?
  - b. What was the highest point that Jason reached?
  - c. When did Jason hit the water?
- 2. If a toy rocket is launched vertically upward from ground level with an initial velocity of 128 feet per second, then its height h after t seconds is given by the equation  $h(t) = -16t^2 + 128t + 2$  (if air resistance is neglected)
  - a. After how many seconds will the rocket be 112 feet above the ground?
  - b. How long will it take the rocket to hit its maximum height?
  - c. What is the maximum height?
- 3. A rocket is launched from atop a 101-foot cliff with an initial velocity of 116 ft/s.
  - a. When will the rocket be at the highest point?
  - b. What is the rocket's highest point?
  - c. When will the rocket hit the ground?
- 4. A diver is standing on a platform 24 ft. above the pool. He jumps from the platform with an initial upward velocity of 8 ft/s.
  - a. When will the diver hit the water?
  - b. When is the diver at the highest point?
  - c. What is the diver's highest point?
  - d. What was the height of the diver at 0.5 seconds?

- 5. When the Verrazano Narrows Bridge opened in 1964, it was the world's largest suspension bridge. The bridge's main cable is suspended from a tower 693 feet above the roadway. The following function rule gives the height of the suspension cable at a distance from the tower d.  $h(d) = .00009d^2 0.37d + 693$ 
  - a. When is the cable closest to the road surface?
  - b. How far away from the tower is the lowest point on the cable?
- 6. A ball is thrown upward from a height of 15 ft. with an initial upward velocity of 5 ft/s.
  - a. When will the ball hit the ground?
  - b. What is the highest point of the ball?
  - c. When will the ball reach its highest point?
  - d. What is the height of the ball after 0.7 seconds?
- 7. One of the games at a carnival involves trying to ring a bell with a ball by hitting a lever that propels the ball into the air. The height of the ball is modeled by the equation  $h(t) = -16t^2 + 39t + 2$ . If the bell is 25 feet above the ground, will the ball hit the bell?
- 8. Find the quadratic model that best models each table of values.

a.

| X | -2 | -1 | 0  | 1  | 2  |
|---|----|----|----|----|----|
| у | 46 | 34 | 27 | 24 | 24 |

b.

| Х | -4   | -3   | 0    | 5      | 12     |
|---|------|------|------|--------|--------|
| у | 52.7 | 53.1 | 24.3 | -123.7 | -540.9 |

c.

| Ī | X | -4 | -1 | 4   | 8    | 11   |
|---|---|----|----|-----|------|------|
|   | y | 86 | 32 | -58 | -130 | -183 |

d.

| X | 0    | 10  | 20 | 30  | 40  |
|---|------|-----|----|-----|-----|
| У | -180 | -65 | 40 | 135 | 220 |